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ABSTRACT

Reasoning LLMs are trained to verbalize their reasoning process, yielding strong
gains on complex tasks. This transparency also opens a promising direction: mul-
tiple reasoners can directly collaborate on each other’s thinking within a shared
trajectory, yielding better inference efficiency and exploration. A key prerequisite,
however, is the ability to assess the usefulness and build on another model’s par-
tial thinking—we call this off-trajectory reasoning. Our paper investigates a crit-
ical question: can standard solo-reasoning training pipelines deliver desired off-
trajectory behaviors? We propose twin tests that capture the two extremes of the
off-trajectory spectrum, namely Recoverability, which tests whether LLMs can
backtrack from “distractions” induced by misleading reasoning traces, and Guid-
ability, which tests their ability to build upon correct reasoning from stronger col-
laborators. Our study evaluates 15 open-weight LLMs (1.5B-32B) and reveals a
counterintuitive finding—*stronger” LL.Ms on benchmarks are often more fragile
under distraction. Moreover, all models tested fail to effectively leverage guiding
steps from collaborators on problems beyond their inherent capabilities with solve
rates remaining under 9.2%. Finally, we conduct control studies to isolate the ef-
fects of three factors in post-training on these behaviors: the choice of distillation
teacher, the use of RL, and data selection strategy. Our results provide action-
able insights for training natively strong reasoning collaborators; e.g., we find that
suboptimal recoverability behaviors of teacher models are transferred to distilled
students even if the distillation trajectories are correct. Taken together, this work
lays the groundwork for evaluating multi-model collaborations in shared reason-

ing trajectories and highlights the limitations of off-the-shelf reasoning LLMs.

1 INTRODUCTION

LLMs with thinking abilities, such as OpenAl’s o-series (Jaech
et al., 2024), DeepSeek-R1 (Guo et al., 2025), and Qwen3
Thinking (Yang et al., 2025), have recently emerged as the
frontier models for complex reasoning tasks like mathematics
and coding. These models, trained with reinforcement learning
with verifiable rewards (RLVR) (Shao et al., 2024) or distilla-
tion (Hinton et al., 2015), learn to verbalize their intermedi-
ate reasoning in language and exhibit self-reflective behaviors
(Gandhi et al., 2025), such as verifying answers or seeking al-
ternative approaches.

This transparency opens up a promising direction—stronger
LLM collaborators or even human overseers can directly in-
tervene on an LLM’s ongoing reasoning and exert direct con-
trol over its thinking. This new paradigm, as demonstrated in
Figure 1, can have positive implications including but not lim-
ited to: (1) Efficiency: balancing performance and inference
speed, large LLMs should ideally focus on challenging deriva-
tions and offload routine sub-steps (e.g., arithmetic checking)
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Figure 1: Comparison of solo (left)
vs. collaborative reasoning (right)
setting. LLMs of different sizes
and functionalities collaborate on a
shared trajectory.

to smaller models (Akhauri et al., 2025; Chen et al., 2023). (2) Exploration: models/humans with
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Figure 2: [llustration of the twin tests: we perturb a model’s reasoning trajectories with off-trajectory
steers to evaluate its recoverability (under a distracting steer) or guidability (under a guiding steer).
The distracting steer is sampled from the same reasoner but for a different question.

complementary expertise can broaden the reasoning search by spawning diverse branches (Chen
et al., 2025; Qi et al., 2025; Pan et al., 2025) and composing their skills to solve cross-domain tasks.
(3) Safety: an overseer model or even humans can directly intervene to steer the ongoing reasoning
in a safer direction rather than abruptly terminate the reasoning process (Wu et al., 2025; Zhang
et al., 2025; Korbak et al., 2025).

Most LLMs today are trained and evaluated to generate complete reasoning processes on their own,
which we term solo-reasoning. But can they collaborate with other reasoners—models, humans,
or programs—in real time within their trajectories? While some recent work has explored these
possibilities (Akhauri et al., 2025; Chen et al., 2023), it remains unclear whether solo-reasoning
LLMs are equipped to effectively leverage partial reasoning trajectories from other collaborators due
to the associated distribution shift. Ideally, LLMs should integrate useful insights from collaborators
and reliably backtrack from incorrect or unhelpful inputs, even if these traces do not naturally occur
in their distribution. We call this capability off-trajectory reasoning and ask: Can solo-reasoning
LLMs collaborate with off-distribution trajectories?

We approach this question by decomposing off-trajectory reasoning into two complementary parts,
recoverability and guidability, and evaluating both in simulated collaboration scenarios (see Fig-
ure 2). The recoverability test is designed to evaluate if LLMs can robustly backtrack from erroneous
reasoning from collaborators to continue their original correct trajectories. At the other end of the
spectrum, the guidability test evaluates if LLMs can successfully build upon correct yet incomplete
reasoning from guiding models to tackle problems that are unable to solve by solo-reasoning.'

We systematically evaluate 15 open-weight LLMs on a suite of five math benchmarks (MAA, 2024;
2025; Hendrycks et al., 2021; Lewkowycz et al., 2022; He et al., 2024). Counterintuitively, we find
that stronger reasoning models are more prone to failure under off-trajectory distractions. In the
recoverability test, their performance drops to 74.9% on problems they originally solved with 100%
success rate. At the same time, the guidability test reveals that LLMs fail to leverage useful hints to
continue from other models’ correct trajectories, even when correct answers are already present in
these trajectories. Overall, our results present a sobering view into LLMs’ “reasoning capabilities”—
LLMs can neither reject distracting nor build upon useful off-trajectory inputs. Moreover, we show
that the current practice of over-optimizing for benchmark performances do not account for broader
reasoning capabilities, of which off-trajectory reasoning is an intrinsic part.

Next, we investigate how decisions in post-training, particularly the choice of teacher models for dis-
tillation, training data selection strategies, and RL training after distillation, impact recoverability

"'We systematically test for correctness of reasoning in this paper. However, our framework can be extended
for other aspects of alignment. For example, can solo LLMs robustly reject unsafe collaborator trajectories?



and guidability. Through careful control studies, we discover that (1) the recoverability of the teacher
model directly influences the student’s recoverability, despite training being limited to correct tra-
jectories that do not exhibit recoverability errors, (2) RL can further improve both recoverability and
guidability when supervised fine-tuning (SFT) saturates, and (3) aggressively reducing distillation
data quantity based on quality filtering can lead to high variance in recoverability across checkpoints
for similar benchmark scores.

As a step towards multi-reasoner collaboration, our work makes these key contributions:

1. We introduce the Recoverability and Guidability tests as a systematic framework for evaluating
off-trajectory reasoning. Our setup complements existing standard solo-reasoning benchmarks
by offering a different perspective on reasoning performance. (§2)

2. Equipped with this framework, we evaluate 15 open-weight LLMs for off-trajectory reasoning.
Our analysis reveals key limitations of “strong” solo reasoners and shows that they consistently
fail at exploiting correct guidance to improve beyond their inherent capability limits. (§3)

3. We conduct the first control studies on the direct effects of post-training decisions—distillation
teacher models, RL fine-tuning, and data filtering—on recoverability and guidability. Our results
provide actionable insights for training solo-reasoners to be robust to off-distribution distractions
and to exhibit better performance in off-trajectory reasoning. (§4)

2 TWIN TESTS FOR OFF-TRAJECTORY REASONING

Preliminaries and Notation. Let M be a reasoning model and (g, a*) be a training or test data
point. In standard solo-reasoning, M generates a reasoning trajectory r = [ry,72,...,7%] and a
final answer a for an input question g, i.e., (r,a) ~ M (- | ¢). We use r; to refer to a reasoning unit,
the granularity of which can be flexibly determined.

In contrast, in the collaborative setting, multiple models or different instantiations of the same model
contribute different parts to the reasoning trajectory r. Recent work has explored some collabora-
tion strategies, such as dynamically off-loading reasoning sub-parts to weaker/stronger models (Yan
et al., 2025; Zhou et al., 2025; Akhauri et al., 2025), tooling (Jin et al., 2025) or aggregating parallel
samples (Zhao et al., 2025; Qi et al., 2025) during both training and inference.

The success of such collaboration hinges on the main model M s ability to process and build upon

a trajectory mixing both in- and off-distribution reasoning units r = [r M l,rM ”, con, M,
In this paper, we instantiate a simplified setup of two-model collaboration to probe off-trajectory

reasoning capabilities in frontier open-weight LLMs.

Two-Model Setup We simulate a collaboration between two reasoning systems, where the main
model M and the collaborator M jointly contribute to an off-trajectory reasoning [r°8, r5*¢°*]. In
practice, we construct r°¢ by sampling from the main model M and stopping generation at m tokens,
i.e., [r°8| = m. Similarly, r5**®" is sampled from the collaborator with |r5**®"| limited to n tokens.
To measure off-trajectory reasoning performance, we concatenate these two incomplete trajectories
to construct a shared off-distribution trajectory. Finally, we sample a reasoning completion and final
answer from M conditioned on the original question and this trajectory.

(roff7aoff) ~ M( ‘ q, [Tog7rsteer])

For domains with verifiable rewards, we can measure the success of this off-trajectory completion
by computing the accuracy of the final answer, i.e., E(y 4<)~p []l{ a®f = a* }]

Considerations for designing the steer. This simplified setup allows us to flexibly simulate the two
extreme effects r°t°°T can have on the main model M. At one end, the steer can be distracting: it
misleads M away from its original correct trajectory and steers it down an incorrect path. At the
other end, the steer can have guiding effects: it provides hints that can potentially guide M towards
a correct solution for challenging problems beyond its capability boundaries.

Based on these desiderata, we design twin tests: (i) Recoverability, which tests whether LLMs
can resist a distracting steer and backtrack to previous reasoning, and (ii) Guidability, which tests
models’ abilities to successfully leverage a guiding steer to surpass their solo-reasoning ability.

These twin tests differ mainly in two aspects: the selection of test questions ¢ and the construction
of steered trajectories [r°, 75*°°"]. Given an original test set D and test model M, our protocol



automatically instantiates an M -specific off-trajectory dataset for both tests separately, i.e., D'} =
{(q, [r°8, %], a*)}. The overall process for this is shown in Figure 2 and described below.

2.1 RECOVERABILITY TEST

Selecting test data points {(g, a*) }. Our goal is to test how well M can backtrack from a distract-
ing steer and still output the correct answer a*. For a given test model M, we select the subset of
test questions that M can correctly answer in solo-reasoning, i.e., a = a*, where (r,a) ~ M (- | q).
This selection can isolate the effects of distracting steers from M’s inherent capabilities .

Constructing steered trajectories. The trajectory consists of two parts: 7°8 and r5%°°*, We trun-
cate 7, the reasoning trajectory from solo-reasoning, to the first m tokens to obtain 7°¢. In our
experiments, described in § 3.1, we vary m as a fraction of the total number of tokens in 7.

We require %" to be a strong distractor for the test model M. However, it is difficult to determine
a priori which model M., and steer 75" will achieve this reliably. Therefore, we simulate the
distraction 7*¢¢" by sampling from M itself, but conditioned on a different question ¢’. So, if M is
distracted to blindly complete r5*°°T its reasoning is then guaranteed to be incorrect. In practice, we
control the length of %" by truncating it to the first n tokens of v/, where (', a’) ~ M(- | ¢). In
our experiments, we control the strength of the distractor by varying n (i.e., [r5*®°'|) and the insertion
point by varying m (i.e., |7°%|). Exact experiment details are provided in § 3.1.

2.2 GUIDABILITY TEST

Selecting test data points {(g,a*)}. In the guidability test, we aim to study whether M can
effectively leverage a guiding steer, i.e., a correct partial reasoning, for questions it struggles with
during solo-reasoning. Therefore, we select the subset of test questions for which the solo-reasoning
solve rate is either O or 1 out of 8 samples.

Constructing steered trajectories. First, unlike the recoverability test, we do not include M’s own
reasoning trace r°% in steered trajectory (i.e., set m = 0). This is because r°¢ might already contain
errors that anchor M in the wrong direction, thereby confounding the measurement of guidability.

We construct 75%°* using a stronger reasoner Mgico, as the guide, i.e., with a higher benchmark
performance than M. Figure 3 illustrates this. To test whether M can build on Mgtee,’s correct
reasoning, we only provide the first n tokens of the complete trajectory. In practice, we vary the
“amount” of guidance by varying n to different fractions of the complete trajectory from the guide.
Moreover, we use multiple guiding models to construct independent steers for each q. This allows
us to measure guidability under different off-trajectory distributions and amount of guidance.
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Figure 3: 15 open-weight LLMs grouped into four families. The branches indicate the source from
which LLMs are derived, and the colors indicate SFT/RL training methods.

3 OFF-THE-SHELF EVALUATION & RESULTS

3.1 EXPERIMENT SETUP
Datasets and Benchmarks. We run our experiments on 15 open-weight models. To illustrate the
relationships between these LLMs, we group them into four families (see Figure 3):

* DeepSeek-R1 (Guo et al., 2025): R1-Qwen—-1.5B/7B/32B and R1-L1ama-8B are distilled
from DeepSeek—R1 using supervised fine-tuning (SFT).



-@- AM-Thinking-v1-32B OpenThinker3-78 - @- Qwen3-88 9
DeepMath-1.58 @ QwQ-32B R1-Distill-Qwen-1.58 Model Teach. (%) Ans.? (%) A
DeepScaleR-1.5B Qwen3-1.7B R1-Distill-Qwen-328

LIMO-328 @ Qwen3-30B-A3B R1-Distill-Qwen-78 R1-Qwen-1.5B 28.4 25.6 2.8
-@- OpenThinker3-1.5B Qwen3-32B -@- Rl-Llama-8B DeepSCaleR-l SB 298 233 6.5
5 100 RI1-Llama-8B 35.0 21.8 13.2
o DeepMath-1.5B 27.1 22.9 4.2
S 80 OpenThinker3-1.5B 32.7 26.9 5.8
2 Qwen3-1.7B 29.9 18.0 11.9
2 60 R1-Qwen-7B 19.7 12.1 7.6
3 LIMO-32B 21.5 10.2 11.3
© 40 OpenThinker3-7B 20.6 13.8 6.8
g . R1-Qwen-32B 22.5 11.2 11.3
g - Avg. 26.7 18.6 8.1
0 0% 20% 40% 60% 80%  Table 2: Analysis of guidability results. Teach. =
Inserted Position (% in Trajectory) guidability score (individual); Ans.? = fraction of

Figure 4: Recoverability (shared) across posi- steers already containing the correct answer; A =
tions (%) of the original trajectory for 15 LLMs Teach. — Ans. (pp).

* Qwen3 (Yang et al., 2025): Qwen3-32B is trained with RL for reasoning without distillation,
while Qwen3-1.7B/8B/30B-A3B are distilled from Qwen3-235B and Qwen3-32B.

* QwQ: QwQ-32B (Qwen Team, 2025) is trained with RL from the Qwen?2 . 5-32B-Base model.
OpenThinker3-1.5B/7B (Guha et al., 2025) are based on Qwen2.5-Instruct and dis-
tilled from QwQ—-32B on 1.2M curated math and coding examples.

¢ Community: DeepScaleR-1.5B (Luo et al., 2025) and DeepMath-1.5B (He et al., 2025b)
are trained with RL on R1-Qwen-1. 5B using DeepScaleR and DeepMath datasets, respectively.
LIMO-32B (Ye et al., 2025) is SFT from Qwen2.5-32B-Instruct on the LIMO dataset of
817 examples. Finally, AM-Thinking-32B (Ji et al., 2025) is a Qwen2 . 5-32B-Base model
first distilled on 2.84M examples, and then trained with RL on 54K math and coding questions.

We evaluate on a pool of 1,507 math questions sourced from five standard benchmarks, AIME-2024
(MAA, 2024), AIME-2025 (MAA, 2025), MATH-500 (Hendrycks et al., 2021), Minerva (math
subset) (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024).

Hyperparameter Settings. All LLMs are evaluated under the same hyperparameter settings: max-
imum tokens of 32K, temperature 0.6, top-p 0.95, and no system prompt. For each question, we
sample 8 completions and report the average Pass@1 over samples.

Recoverability and Guidability Setup. Following the protocols in §2.1, we sample 200 original
trajectories r°¢ and 50 trajectories as distracting steers r5**¢* for each LLM. By default, we set n,
i.e., [r%t°°T| to be 0.2 times the length of the full distracting trajectory; this leaves sufficient tokens
for off-trajectory completion. We set m, i.e., [r°%], to be 0, 0.2, 0.4, 0.6, and 0.8 times the length
of the original reasoning from the main model. We report recoverability on two subsets: (1) shared
subset that includes questions that all 15 LLMs can fully solve (8 out of 8), and (2) individual subset
that samples questions independently for each LLM following the criterion defined in § 2.

We instantiate the guidability tests using DeepSeek—R1, Qwen3-235B, and QwQ—-32B as Mteer
to sample guiding steers 75", Since the best 5 LLMs almost saturate the benchmarks, we only
evaluate on the remaining 10 LLMs that have enough questions with solve rate < % (Table 9). We
set n, i.e., |r5teer|, to be 0.2, 0.4, 0.6 and 0.8 times the total tokens in the guide’s reasoning. Similar
to the recoverability test, we report guidability scores on two subsets: shared (intersection across
the 10 evaluated models) and individual (per model).

3.2 RESULTS

Our main results are shown in Table 1. We group models into low, medium, and high tiers based on
their solo-reasoning performance (reported in the Avg. Benchmark column) and report recoverability
and guidability results on both shared and individual subsets.

Finding 1: Stronger solo-reasoners # stronger collaborators. Surprisingly, we find that recov-
erability and guidability are largely orthogonal to LLMs’ solo-reasoning performance. Particularly,
we highlight models in the low benchmark tier such as OpenThinker3-1.5Band Qwen3-1.7B



Model | Family | Benchmark Recoverability Guidability
Avg. Sh. Ind. Sh. Ind.
Low Benchmark Scores
R1 —Qwen—l 5B DS-R1 47.5 60.6T+2 38.6T+2 3'0T+0 28'4T+5
DeepScaleR-1.5B | Comm. 53.3 8244147 529445 4. 1441 29.8445
R1-Llama-8B DS-R1 54.1 81 '4T+5 49'6T+3 8~7T+4 35.0¢+7
DeepMath-l.SB Comm. 54.8 88.0@.9 61.8¢+6 3.4 12 27.1 1
OpenThinkerS—l.SB QWQ 59.2 95.2¢+9 71.8¢+3 5.7 11 32.7 T+4
QWCH3-1.7B QWCH3 59.9 984 149 74.6 149 6.1 140 29.9 42
Medium Benchmark Scores
RI—QWGH—7B DS-R1 64.6 73.5¢,1 45.8¢,2 6.0 12 19.7 1-6
LIMO-32B | Comm. 67.3 29.3,9 18.5,7 8.8 140 215 5
OpenThinker3—7B QWQ 72.1 85.6@.1 74.5@.5 9.1 140 20.6 17
R1-Qwen-32B | DS-R1 72.3 69.8,6 45.6,6 9.2 140 225 16
High Benchmark Scores
Qwen3-8B | Qwen3 79.1 85.9140 68.8141 N/A N/A
QwQ-32B QwQ 80.5 79.7, 5 62.6, N/A N/A
Qwen3-32B | Qwen3 81.0 71.88 56.9,.5 N/A N/A
Qwen3-30B-A3B | Qwen3 81.1 87.8,2 60.0, 5 N/A N/A
AM-Thinking-32B Comm. 82.6 33~4l-13 25~3l-13 N/A N/A

Table 1: Results for 15 LLMs from four families. Columns report benchmark averages and re-
coverability/guidability scores for shared (Sh.) and individual (Ind.) subsets. Models are grouped
into low/medium/high tiers by Benchmark Avg. Subscripts indicate rank changes relative to the
benchmark ranking (+k rise, —k drop); green (1) denotes improvement, red ({) decline. “DS-R1” =
DeepSeek-R1 family, “Comm.” = Community models. N/A = not evaluated. Our results show that
the benchmark performances are largely orthogonal to recoverability.

that exhibit substantially better recoverability than medium and high tier models like QwQ—-32B and
Qwen3-32B. Noticeably, the best performing solo-reasoning model AM-Thinking-32B reports
the second worst recoverability performance. Similarly, LTMO-32B—claimed to surpass prior SFT
approaches using only 1% of training data—only recovers less than 30% of the time. Across models,
we observe an average of 25.1% degradation in their reasoning capabilities, when their trajectories
are perturbed with tangential distractions.

In addition, our results show that all LLMs report exceptionally low guidability scores; none of
the models report > 10% on the shared subset. Taken together, these findings suggest that models
optimized heavily for popular benchmarks may have hidden vulnerabilities, particularly in
off-trajectory reasoning. Our twin tests successfully surface such limitations.

Finding 2: The beginning of model reasoning is critical for recovery. To better understand the
recoverability trends in Table 1, we visualize the recovery rates separately for different percentages
(%) of the original thinking trajectory where the distracting steer is inserted. Figure 4 shows these
results. Interestingly, we observe a consistent pattern across models—distraction at the very start
(0%) of the trajectory leads to the largest degradation. This is surprising as models typically only
restate the question in the opening and rarely include actual problem solving. Given these results,
we hypothesize that restating the question at the start is critical for models to anchor later reasoning.

To test our hypothesis, we conduct an ablation that re-instantiates the recoverability tests but pre-
serves the first paragraph of the original trajectory. We find that most LLMs exhibit noticeable
improvements across positions after this change, especially at the 0% position®. In fact, the average
recoverability score exceeds 83.5% for all models (except LIMO-32B and AM-Thinking—-32B)
with this small tweak in their reasoning trajectories. This clearly shows that while restating the
question does not add new information, it is critical for LLM off-trajectory reasoning.

Finding 3: LLMs fail to leverage correct guidance to surpass their inherent limits. As Table 1
shows, all models, regardless of their solo-reasoning capabilities, struggle to effectively build upon
guiding trajectories. Crucially, we find that the performance does not improve even when models

2The full set of results for both shared and individual metrics are reported in Tables 5 and 7 in the Appendix.
3The complete set of results is included in Table 6 in the Appendix
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Figure 5: Qwen2.5 models (1.5B and 3B) distilled from AM (-Thinking) —32B show consistently
lower recoverability than those distilled from QwQ—-32B or Qwen3-32B, while having similar per-
formance on benchmark and guidability; the gap is significant after step 300 (p < 0.005). Stars
mark each model’s peak over training steps.

are paired with their own distillation teacher, i.e., the model whose samples they were trained on
(see Table 12 for full set of results). For example, Qwen3—-1. 7B shows no guidability gains when
guided by Qwen3-235B compared to other models.

Further investigation reveals that even these low guidability scores are artificially inflated. Since
we truncate the guiding steer at different lengths, it is possible that some partial 75*¢°" already contain
the correct answer derivation. In such cases, we expect the guidability test to be trivially easy.

In Table 2, we report the percentage of guiding steers that already contain the correct answer (Ans.?
column). We find that this is true for 18.6% of steers on average (see Table 10 for breakdown
by steer length). However, we find that LLMs can often fail to recognize such correct reasoning,
reject the given answer and pivot to an incorrect path, resulting in the low guidability scores. This
suggests that conditioning LLMs on correct but out-of-distribution traces does not enable them to
successfully leverage these guiding traces and surpass their inherent capability limits.

4 CONTROL STUDIES ON POST-TRAINING DECISIONS

Section 3 shows that different LLMs exhibit distinct off-trajectory behaviors. However, these LLMs
are trained on different data and derived from different base models; therefore, it remains unclear
what factors in the post-training procedures drive these differences. To understand this, we conduct
controlled experiments to isolate the effects of (1) teacher models used for distillation in § 4.1, (2)
RL training after SFT in § 4.2, and (3) quality heuristics for data filtering in § 4.3.

4.1 How Do TEACHERS’ BEHAVIORS AFFECT DISTILLED MODELS?

Hypothesis. We observe from Table 1 that LLMs distilled from DeepSeek—R1 generally have
lower recoverability scores compared to those from QwQ and Qwen3. This is despite the fact that
most of them are trained from similar base models using distillation. Therefore, we ask: Do distilled
models inherit the vulnerabilities of their teachers’ off-trajectory behaviors through distillation?

Setup. We conduct controlled experiments with three LLMs as the distillation teacher models:
AM-Thinking—32B, QwQ—-32B, Qwen3-32B. We choose the AM model since it has similar
benchmark performance but significantly lower recoverability compared to QwQ and Qwen3 models
in Table 1. We perform SFT on two Qwen2.5 models (1.5B and 3B) with correct trajectories from
each teacher separately (more details in Appendix E).
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Figure 6: GRPO 1.5B and 3B (from SFT@Step 400) show noticeable gains on benchmark, recov-
erability, and guidability compared to the initial checkpoint and baselines (SFT@Step 500). This
improvement is consistent over RL training. Stars mark the peak values over training steps.

We evaluate the distilled models (AM-/QwQ-/Qwen3-Distill 1.5B/3B) on MATH-500 for bench-
mark performance and twin tests. Figure 5 reports the results and highlights checkpoints with sig-
nificant differences (p < 0.005) based on two-sample t-tests.

Results: Students mirror their teacher’s recoverability performance. Our results show that AM-
Distill models show significantly lower recoverability than QwQ- and Qwen3-Distill counterparts
after step 300, despite similar benchmark and guidability scores. This recoverability gap persists
across all model sizes that we tested and also remains consistent at different positions of the reason-
ing trajectories (Appendix E).

Our results highlight that correctness should not be the sole criterion for selecting teacher trajec-
tories. Instead, other vulnerabilities of the teacher model should be accounted for as these may be
distilled into student models. Our twin tests provide a useful criterion for selecting teachers, and can
be combined with other metrics of selection.

4.2 CAN RL FURTHER IMPROVE OFE-TRAJECTORY REASONING AFTER SFT SATURATES?

Hypothesis. In Table 1, we do not observe a consistent advantage of RL over SFT distillation on
twin tests. However, training recipes of these models are different, making it impossible to draw
concrete conclusions about RL’s impact. Here, we ask: Can RL further improve both recoverability
and guidability even after SFT has saturated?

Setup. We use distillation checkpoints from Section 4.1—AM-Distill 1.5B and 3B models at step
400—as the initial policy for RL training. This choice is motivated by: (1) we observe that SFT
saturates on benchmarks and twin tests after step 400; and (2) AM-Distill is shown to perform
poorly in recoverability, making it more suitable to test the effects of RL. We train both models on
the MATHS8K dataset with Grouped Relative Policy Optimization (GRPO) (Shao et al., 2024).

Results: RL training reports massive improvements in recoverability. Figure 6 shows the impact
of RL training on benchmark scores, recoverability and guidability. While all scores improve with
RL, we see a noticeably high recoverability improvement (e.g., 15.3%-28.9%) accompanying a
slight increase in benchmark scores (5.4%-7.6%) and guidability (8.3%-8.7%). Notably, RL training
completely bridges the gap in recoverability that we observed in Figure 5 between AM-Distill and
QwQ-/Qwen3-Distill models. We hypothesize that outcome-based RL improves recoverability by
exposing models to noisy trajectories and explicitly rewarding successful recoveries. In contrast,
SFT training is mostly on successful demonstrations. We leave a more thorough investigation of the
mechanisms behind the observed improvement to future work.

4.3 DOES LESS DATA ALWAYS LEAD TO POORER RECOVERABILITY?

Hypothesis. Recent works have shown that data quality is critical for strong reasoning capabili-
ties (Dang & Ngo, 2025; Albalak et al., 2025; Guha et al., 2025). The “Less-Is-More” (LIMO)
hypothesis (Ye et al., 2025) pushes for an extreme version of this claim—a minimal amount of
“high-quality” data is sufficient to elicit complicated reasoning. Ye et al. (2025) curate the LIMO
dataset of 817 examples filtered based on heuristics and support their claim with the performance



of the LIMO-32B model on popular reasoning benchmarks. Their results imply that data quantity
is less important for training LLM reasoning as long as the data quality is “high” based on their
criteria. However, we observe a contrary result in Table 1 where the LIMO-32B model reports the
worst recoverability despite decent solo-reasoning performance. To understand this, we ask: Is the
less-is-more paradigm inherently limited for off-trajectory reasoning?

Setup. We train Qwen?2 .5-3B-Base models on two larger datasets of mixed “quality” and two
smaller ones of only “high-quality” data: (1) FULL-8K: MATHSK dataset distilled from QwQ—-32B
in §4.1 (i.e., the same dataset used to train QwQ-Distill 3B in §4.1); (2) FULL-8.8K: a mix of FULL-
8K and the LIMO dataset (Ye et al., 2025); (3) LIMO-800: the LIMO dataset; and (4) LIMO-600:
600 “challenging” examples we extracted from FULL-8K, following the “LIMO” principle, i.e.,
classified as Level-5 difficulty and with long reasoning trajectories. We train each model with SFT
until its benchmark performance plateaus. Figure 7 plots recoverability scores against benchmark
scores at different checkpoints during training.

Results: To our surprise, models trained ®  FULL-8.8K 3B % LIMO-600 3B

on less data are not necessarily worse * FULL-8K 3B = LIMO-800 3B

on recoverability but exhibit extremely 0.5 ry

high variance between checkpoints. 2o A * % *

LIMO-600 and LIMO-800 3B models = * K

show markedly different levels of recover- 03| * n g r =

ability against similar benchmark scores. g 0.2 . -

On the other hand, FULL-8K and FULL- S *k "
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Our results show that “over-optimizing”
benchmarks through aggressive data fil-
tering could introduce unwanted biases in
off-trajectory behaviors that are not cap-
tured by standard solo-reasoning evalua-
tions. In addition, our tests can comple-
ment existing criteria for selecting check-
points with higher robustness to out-of-
distribution scenarios.

Figure 7: LIMO-600/-800 3B models exhibit greater
variance in recoverability than FULL-8K/8.8K 3B.
Colors: FULL, LIMO. Markers: square = contains data
from LIMO-800, star = otherwise. We observe that
model checkpoints trained on high-quality but limited
quantity of data show high variance in recoverability
scores across similar benchmark score values.

5 RELATED WORK

Reasoning LLMs. Recent post-training advances have led to massive improvements on math and
coding benchmarks (Huang & Yang, 2025; Guo et al., 2025), as exhibited by both closed- and
open-source reasoning LLMs since the release of OpenAl’s o-1 (Jaech et al., 2024), e.g., Guo et al.
(2025); Yang et al. (2025); Guha et al. (2025); Ye et al. (2025); Ji et al. (2025). These models are
typically trained to produce extended reasoning traces using RL algorithms such as Proximal Policy
Optimization (PPO) (Schulman et al., 2017), Grouped Relative Policy Optimization (GRPO), and
related variants (Shao et al., 2024), typically with verifiable rewards. At smaller scales (under 32B
parameters), reasoning models like R1-Qwen-Distill series (Guo et al., 2025) and Qwen3 family
(Yang et al., 2025) are primarily trained with distillation (Hinton et al., 2015). Additionally, the
open-source community has also released artifacts that further train these models with RL. In our
study, we analyze 15 representative open-weight reasoning LLMs spanning diverse model families
and training paradigms.

LLM Reasoning Intervention and Collaboration. Recent studies intervene on LLM reasoning
to understand and control their behaviors, including perturbing intermediate steps to examine their
faithfulness (Arcuschin et al., 2025; Baker et al., 2025), improve instruction following and alignment
behaviors (Wu et al., 2025), or interpret (Lee et al., 2025b; Marjanovi¢ et al., 2025) and stress-test
cognitive behaviors (Gandhi et al., 2025). Wen et al. (2025) examine the impact of thinking patterns
on outcome correctness, while He et al. (2025a); Lee et al. (2025b) systematically categorize differ-
ent types of reasoning strategies and errors. In a closely related work, He et al. (2025a) investigates



LLMs’ ability to recover from unhelpful thoughts. Our twin tests also intervene on reasoning but
differ in their goal of simulating extreme scenarios of multi-model collaboration.

Our work is also closely related to hybrid parallel and serialized scaling approaches (Pan et al.,
2025), including offloading challenging reasoning parts to larger models (Akhauri et al., 2025) and
orchestrating different models for high-level planning and downstream execution (Lee et al., 2025a).
Our work evaluates how solo-reasoning LL.Ms can fail when routed onto a shared reasoning trajec-
tory.

6 CONCLUSION

In this work, we investigate off-trajectory reasoning in LLMs—their ability to “think™ on trajecto-
ries steered by other reasoners. We introduce Recoverability and Guidability tests to evaluate model
robustness under off-trajectory reasoning, which test (i) the ability to backtrack to original correct
trajectories conditioned on distracting steers, and (ii) the ability to effectively use guidance from
off-distribution traces. Our evaluation of 15 open-weight LLMs on both tests reveals that all open-
weight LLMs perform poorly on these tests, highlighting limitations of standard solo-reasoners in
collaborative settings. Finally, control studies show that recoverability is directly shaped by distil-
lation teachers, can be improved with RL fine-tuning, and becomes more variable as the size of the
distillation dataset shrinks. These results offer valuable insights for future work to advance collabo-
rative reasoning systems.
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A LLM-AS-A-JUDGE PROMPT

To ensure accurate scoring for evaluations in §3, we first validate all responses with Math-Verify
(Kydlicek) and double check with DeepSeek-V3 as a judge. We prompt DeepSeek-V3 for re-
sponses that are labeled as wrong by math-verify. Table 3 contains the exact prompt.

### System Prompt

You are an unbiased examiner who evaluates whether a student’s
answer to a given question is correct.

Your task is to determine if the student’s final answer matches
the standard answer provided, based solely on correctness and the
question’s specific requirements.

Do not perform any additional calculations or reinterpret the
question. Simply compare the student’s answer to the standard
answer to determine if it satisfies the question’s requirements.

Focus strictly on:

1. Understanding the exact requirement of the question.

2. Comparing the student’s final answer directly and rigorously
to the provided standard answer.

3. Your task is not to solve the problem but to determine
whether the student’s answer is correct based on the question’s
requirements. Avoid any unnecessary analysis, assumptions, or

re-solving the problem.

Note:

- For intervals/ranges: The student’s answer must cover the EXACT
SAME range as the standard answer, NOT just any single value or
subset within that range;

— If the standard answer contains multiple solutions connected by
"or’/’and’, all of them must be listed in the student’s answer;

- If student’s response does not mention any answer, it is
considered WRONG;

- You must be deterministic and rigorous - always declare the
answer as either CORRECT or WRONG;

— Small rounding differences are permitted if all the derivation
steps are correct.

Your response must include:

### Short Analysis

Provide a short and evidence-backed analysis between <analysis>
</analysis> tags, in which you should extract the final solution
value from the standard answer and the student’s answer and Jjudge
whether they are the same.

### Correctness

Based on the analysis, you should report a label CORRECT or WRONG
between <judge> </judge> tags (e.g., <judge>CORRECT</Jjudge> or
<judge>WRONG</ judge>) .

### User Prompt
Problem: {problem}

Standard Answer: {standard.answer}

Student Answer: {student_answer}

Table 3: LLM-as-a-judge prompt template for evaluating model responses
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B BENCHMARK RESULTS

Here, we provide all 15 LLM performance on five math benchmarks. The Avg. column is the same
as the one in Table 1.

Model AIME 24 AIME 25 MATH-500 Minerva Olympiad Avg.
Low Benchmark Scores

R1-Qwen-1.5B 30.4 21.7 84.2 47.6 53.7 47.5
R1-Llama-8B 429 27.1 88.3 49.0 63.5 54.1
DeepMath-1.5B 37.5 29.2 90.1 54.8 62.6 54.8
DeepScaleR-1.5B 40.0 30.0 89.9 54.7 61.8 55.3
OpenThinker3-1.5B 52.1 39.6 92.2 43.7 68.4 59.2
Qwen3-1.7B 44.2 36.7 92.1 59.5 67.3 59.9
Medium Benchmark Scores

R1-Qwen-7B 55.4 38.3 94.3 64.3 70.8 64.6
LIMO-32B 55.8 41.7 95.4 70.5 73.0 67.3
OpenThinker3-7B 63.3 58.3 96.4 64.6 77.8 72.1
R1-Qwen-32B 67.9 52.1 95.4 69.9 76.5 72.3
High Benchmark Scores

Qwen3-8B 76.3 70.4 97.3 72.2 79.6 79.1
QwQ-32B 79.6 69.6 97.9 72.6 83.1 80.5
Qwen3-32B 78.3 71.7 97.5 75.0 82.3 81.0
Qwen3-30B-A3B 77.5 73.8 97.6 74.1 82.2 81.1
AM-Thinking-32B 80.4 77.9 98.4 72.8 83.5 82.6

Table 4: Benchmark performance (%) of 15 thinking LLMs. “Olympiad” stands for Olympiad-
Bench and “Minerva” is the math subset in Minerva benchmark. “Avg” = unweighted mean of
AIME 24, AIME 25, MATH-500, Minerva, and OlympiadBench.
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C RECOVERABILITY TEST

Table 5 reports a breakdown of model recoverability performance on shared subset across different
positions (%) of the original trajectories. Table 6 reports the results of ablation study explained in
§3.2, where the first paragraph of model reasoning is preserved. The subscripts in Table 6 equals
the difference between the major numbers in Table minus the corresponding numbers in Table 5 to
show the changes in recoverability induced by the small tweak in trajectory.

Model 0% 20% 40% 60% 80% Avg. \ Benchmark Avg.
R1-Distill-Qwen-1.5B  44.0 660 640 670 62.0 60.6 47.5
R1-Llama-8B 655 81.5 845 825 930 814 54.1
DeepMath-1.5B 715 940 900 940 905 88.0 54.8
DeepScaleR-1.5B 61.5 880 895 850 88.0 824 53.3
OpenThinker3-1.5B 89.0 955 965 980 97.0 952 59.2
Qwen3-1.7B 97.0 995 99.0 985 98.0 984 59.9
R1-Distill-Qwen-7B 485 770 790 825 805 735 64.6
LIMO-32B 180 290 360 325 31.0 293 67.3
OpenThinker3-7B 815 87.0 89.0 845 86.0 856 72.1
R1-Distill-Qwen-32B  21.0 70.5 785 90.5 88.5 69.8 72.3
Qwen3-8B 71.0 885 890 915 895 859 79.1
QwQ-32B 53.0 795 865 885 91.0 797 80.5
Qwen3-32B 325 745 885 81.0 825 718 81.0
Qwen3-30B-A3B 68.0 905 935 915 955 878 81.1
AM-Thinking-32B 16,5 290 365 410 440 334 82.6

Table 5: Recoverability (shared) results (on 200 questions fully solved by all 15 LLMs eight out
of eight). 0%, 20%, 40%, 60%, 80% are the positions of original reasoning where distraction is
introduced. “Avg.” column averages across all the positions. “Benchmark Avg.” is from Table 4

Model 0% 20% 40% 60% 80% Avg. | Benchmark Avg.
Rl—QWCl’l-lSB 89.0 +45.0 94.0 +28.0 91.0 +27.0 89.5 +22.5 84.0 +22.0 89.5 +28.9 47.5
R1-Llama-8B 95.5 +30.0 96.5 +15.0 97.0 +12.5 91.5 49.0 87.0 -6.0 93.5 +12.1 54.1
DeepMath—l.SB 99.0 +275 98.5 +45 98.5 +8.5 98.0 +4.0 95.0 +45 97.8 +9.8 54.8
DeepScaleR—l.SB 97.0 +35.5 97.5 +9.5 97.5 +8.0 98.0 +13.0 86.0 2.0 95.2 +12.8 53.3
OpenThinker3 1.5B 96.5 +75 98.0 425 97.0 +0.5 100.0 2.0 96.0 -1.0 97.5 123 59.2
Qwen3-1.7B 100.0 439 100.0 495 100.0 419 1000415 82.0.160 964 29 59.9
R1-Qwen-7B 9154430 9554185 91.04120 895470 850445 905 4470 64.6
LIMO-32B 58.0 4400 575485 5454185 6054080 53.5ims5 56.8 1275 67.3
OpenThinker3—7B 93.0 +11.5 94.5 +7.5 96.0 +7.0 96.5 +12.0 85.0 -1.0 93.0 +7.4 72.1
R1-Qwen-32B 74.5 4535 80.5 4100 90.04115 935430 85035  84.7 4149 72.3
QWCH3-8B 95.5 4245 97.0 +85 97.5 +8.5 97.0 +5.5 80.0 95 934 +75 79.1
QwQ-32B 64.5 1115 73.0 65 81.0 55 90.0 415 86.5 45 79.0 07 80.5
QWCH3—32B 75.0 +42.5 87.0 +12.5 95.5 +7.0 92.5 +11.5 67.5 -15.0 83.5 +11.7 81.0
Qwen3-30B-A3B 83.5 +15.5 88.0 25 91.0 25 94.0 425 66.0 295 84.5 33 81.1
AM-Thinking-32B  55.0 4385 53.0 45040 60.0.4235 75.04340 4255 57.1 .27 82.6

Table 6: Ablation Study: Recoverability (shared) results with original beginning (on 200 questions
fully solved by all 15 LLMs eight out of eight). 0%, 20%, 40%, 60%, 80% are the positions of origi-
nal reasoning where distraction is introduced. “Avg.” averages across all the positions. “Benchmark

Avg.” is from Table 4
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Table 7 and Table 8 report detailed breakdown of recoverability on individual subset; the former sets
the length of distracting steer r5t°°" to be 0.2 times of the reasoning trajectory by default, whereas
the latter sets to 0.4 of the reasoning trajectory.

Model 0% 20% 40% 60% 80% Avg. \ Benchmark Avg.
R1-Distill-Qwen-1.5B  24.0 40.8 40.8 38.8 484 38.6 47.5
R1-Llama-8B 320 384 492 576 798 49.6 54.1
DeepMath-1.5B 544 616 616 640 676 61.8 54.8
DeepScaleR-1.5B 352 540 568 576 60.8 529 53.3
OpenThinker3-1.5B 580 696 776 760 780 718 59.2
Qwen3-1.7B 584 704 744 852 844 746 59.9
R1-Distill-Qwen-7B 384 480 464 504 456 458 64.6
LIMO-32B 88 212 188 200 23.6 185 67.3
OpenThinker3-7B 632 724 764 776 828 745 72.1
R1-Distill-Qwen-32B 84 37.6 53.6 58.0 704 456 72.3
Qwen3-8B 51.6 644 732 760 788 68.8 79.1
QwQ-32B 500 545 648 688 748 62.6 80.5
Qwen3-32B 23.6 536 672 664 736 569 81.0
Qwen3-30B-A3B 36.8 616 688 676 652 60.0 81.1
AM-Thinking-32B 19.6 268 296 264 240 253 82.6

Table 7: Recoverability (individual) results (on 200 randomly sampled questions for each of 15
LLMs). We sample questions according to the inverse proportions of solve rates. 0%, 20%, 40%,
60%, 80% are the positions of original reasoning where distraction is introduced. “Avg.” averages
across all the positions. “Benchmark Avg.” is from Table 4

Model 0% 20% 40% 60% Avg. \ Benchmark Avg.
R1-Distill-Qwen-1.5B  11.6 26.0 27.6 240 223 47.5
R1-Llama-8B 29.2 432 548 564 459 54.1
DeepMath-1.5B 38.8° 540 43.6 512 469 54.8
DeepScaleR-1.5B 248 500 532 504 446 533
OpenThinker3-1.5B 524 70.8 688 788 67.7 59.2
Qwen3-1.7B 59.2 732 764 812 725 59.9
R1-Distill-Qwen-7B 256 412 392 364 356 64.6
LIMO-32B 60 108 168 176 128 67.3
OpenThinker3-7B 596 720 70.0 732 68.7 72.1
R1-Distill-Qwen-32B  10.8 36.8 492 62.0 39.7 72.3
Qwen3-8B 504 672 712 760 66.2 79.1
QwQ-32B 448 520 612 684 56.6 80.5
Qwen3-32B 232 596 624 656 527 81.0
Qwen3-30B-A3B 31,6 532 620 59.6 51.6 81.1
AM-Thinking-32B 228 336 296 260 280 82.6

Table 8: Recoverability (individual) results with 40% of distracting reasoning. We control length
of distraction to be 40% of distracting reasoning trace (default 20% in Table 5). The sampled ques-
tions are the same as in Table 5. 0%, 20%, 40%, 60% are the positions of original reasoning where
distraction is injected. “Avg.” averages across all positions. “Benchmark Avg.” is from Table 4
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D GUIDABILITY TEST

Table 9 reports the number of unique problems and guiding trajectories used per guiding model (sub-
column) for each LLM (row). Table 10 reports guidability (individual) results for different length
of the guiding steers measured by 2% of the trajectories. Similarly, Table 11 reports breakdown of
guidability on shared subset. Table 12 groups guidability (individual) scores by the guiding models

(column) for each LLM (row)

# of Problems # of Trajectories
DeepSeek-R1  Qwen-3 QwQ-32B | DeepSeek-R1 Qwen-3 QwQ-32B
DeepMath-1.5B 152 198 302 231 268 302
DeepScaleR-1.5B 154 196 311 234 269 311
LIMO-Qwen-32B 100 137 185 142 172 185
OpenThinker3-1.5B 151 199 270 236 278 270
OpenThinker3-7B 101 146 163 146 186 163
Qwen3-1.7B 130 175 245 192 233 245
R1-Distill-Llama-8B 151 196 266 229 269 266
R1-Distill-Qwen-1.5B 168 213 363 261 290 363
R1-Distill-Qwen-7B 107 156 190 151 195 190
R1-Distill-Qwen-32B 94 145 162 134 182 162

Table 9: Guidability statistics: unique number of problems and trajectories per guiding model
(column) for different student models (row) for Guidability (individual) test.

Model 20% 40 % 60 % 80% Avg | Benchmark Avg.
Rl-DiStﬂl-QWCIl-l.SB 14.67_7 23.1 17.2 33.231_3 43-04642 28.425'6 47.5
R1-Distill-Llama-8B 20.85,4 29.615.7 4O~027.6 49'734.8 35‘021.8 54.1
DeepMath-1.5B 13.672 211462 312975 423406 27.1mo 54.8
DeepScaleR-l.SB 15.77_5 23.215.7 34.628_1 45.641‘8 29.823'3 53.3
OpenThinker3—1.5B 18.1 11.0 30.621.4 36.132,3 46.042_3 32‘726.9 59.2
QWCI’I3-1.7B 18.258 23.71 1.8 34.8206 42.833,8 29.918_() 59.9
Rl—DiSti]l—QWCH—7B 10.83,5 16.26_3 22.013_1 29.925_4 19.712,1 64.6
LIMO-32B 12.6p6 18.845 244116 30.0218 21.5i02 67.3
OpenThinker3-7B 11~16.5 20.010.1 22.615_4 28.723.4 20.613_3 72.1
Rl—DiSti]l—QWCI]—32B 14.23'3 19-76.1 24.912_4 31'222.6 22.511,2 72.3

Table 10: Guidability (individual) results (on all questions with solve rate < % for each individual
model). 20%, 40%, 60%, 80% are proportion of teacher reasoning revealed to the student model

in its thinking window. The subscript value is the percentage of cases where teachers have derived

the solution. “Avg” is the average across different proportions. “Benchmark Avg” is the same as in

Table 4.
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Model 20% 40% 60% 80% Avg | Benchmark Avg.

R1-Distill-Qwen-1.5B 1.2 0.9 4.1 5.8 3.0 47.5
R1-Distill-Llama-8B 52 5.8 104 133 87 54.1
DeepMath-1.5B 0.9 0.9 4.6 72 34 54.8
DeepScaleR-1.5B 1.2 0.9 5.2 9.0 4.1 53.3
OpenThinker3-1.5B 1.7 55 7.0 8.4 5.7 59.2
Qwen3-1.7B 23 32 7.8 11.0 6.1 59.9
R1-Distill-Qwen-7B 2.6 52 6.4 9.9 6.0 64.6
LIMO-32B 4.9 1.5 101 12.8 8.8 67.3
OpenThinker3-7B 49 9.0 9.6 128 9.1 72.1
R1-Distill-Qwen-32B 4.1 1.5 11.0 142 92 72.3

Table 11: Guidability (shared) results (on questions with solve rate < % across all ten models).
20%, 40%, 60%, 80% are proportion of teacher reasoning revealed to the student model in its think-
ing window. “Avg” is the average across different proportions. “Benchmark Avg” is the same as in
Table 4.

Model DeepSeek-R1  QwQ-32B  Qwen3-235B-A22B | Benchmark Avg.
R1-Distill-Qwen-1.5B 28.2 30.4 26.2 47.5
DeepMath-1.5B 29.0 26.2 26.3 54.8
DeepScaleR-1.5B 30.9 31.1 27.3 53.3
R1-Distill-Llama-8B 37.8 34.4 33.2 54.1
Qwen3-1.7B 334 31.1 25.6 59.9
OpenThinker3-1.5B 35.7 30.6 323 59.2
R1-Distill-Qwen-7B 22.0 19.6 18.7 64.6
LIMO-32B 24.5 24.6 15.7 67.3
R1-Distill-Qwen-32B 23.5 23.0 21.9 72.3
OpenThinker3-7B 229 21.4 18.0 77.8

Table 12: Guidability (individual) results (teacher model comparison). Each teacher model aver-
ages across Guidability (individual) scores for all proportions, 20%, 40%, 60%, 80%, in Table 10

E CONTROL STUDY

Supervised Fine-Tuning Hyperparameters. We perform full fine-tuning on Qwen?2.5-1.5B and
Qwen?2 .5-3B base models for 5 epochs. The max tokens is set to 16K, batch size 64, learning rate
2e-5, warmup ratio 0.1, max gradient norm 1.0, weight decay 0.01.

Ablation Study. We compare the effects of distillation teachers on Qwen?2.5-7B models. We
observe similar patterns as discussed in §4.1, where AM-Distill models achieve worse recoverabil-
ity compared to QwQ-/Qwen3-Distill models. The guidability scores are not measured since the
benchmark performance are too high to collect sufficient qualified problems.

—e— AM-Distill 7B QwQ-Distill 7B —eo— Qwen3-Distill 7B
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Figure 8: Qwen2.5 7B models distilled from AM (Thinking-v1) 32B also shows lower recoverability
than those distilled from QwQ 32B or Qwen 32B, while having similar benchmark performance; the
gap is significant for all steps (p < 0.005). Stars mark each model’s peak over training steps.
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